Abstract

Water is a quintessential element for the survival of mankind. Its variety of uses means that it is always in a constant state of demand. The supply of water most primarily comes from large reservoirs of water such as lakes, streams, and the ocean itself. As such, it is good practice to monitor its quality to ensure it is fit for human consumption. Current water quality monitoring is often carried out in traditional labs but is time consuming and prone to inaccuracies. Therefore, this paper aims to investigate the feasibility of implementing an Arduino-based sensor system for water quality monitoring. A simple prototype consisting of a microcontroller and multiple attached sensors was employed to conduct weekly onsite tests at multiple daily intervals. It was found that the system works reliably but is reliant on human assistance and prone to data inaccuracies. The system however, provides a solid foundation for future expansion works of the same category to elevate the system to being Internet of Things (IoT) friendly.

Highlights

  • The Internet of Things, otherwise known as IoT in the simplest sense, refers to the concept of connecting physical devices, machines, software, and objects to the Internet [1].In a broader sense, it is a dynamic and global network infrastructure, in which intelligent objects and entities are used in conjunction with actuators, electronics, sensors, software and connectivity to enhance connection, collection and data exchange [2]

  • IoT integration into manufacturing operations have been repeatedly emphasized by governments using the term Industrial IoT (IIoT) to produce fully intelligent, connected and autonomous manufacturing plants

  • The main objectives of the study are to develop Internet of Things (IoT) systems, consisting of multiple sensors, communication link, storage and processing capabilities, energy for powering the device, etc., in order to monitor water quality of rivers/streams and to identify the causes and factors contributing to water quality issues around the vicinity if any

Read more

Summary

Introduction

The Internet of Things, otherwise known as IoT in the simplest sense, refers to the concept of connecting physical devices, machines, software, and objects to the Internet [1]. It is a dynamic and global network infrastructure, in which intelligent objects and entities are used in conjunction with actuators, electronics, sensors, software and connectivity to enhance connection, collection and data exchange [2]. This type of network generally has a large number of nodes that interact with the environment and exchange data, whilst reacting to events or triggering actions to exert control or change upon the physical world.

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.