Abstract
ABSTRACTA new deep extreme learning machine (ELM) model is developed to predict water temperature and conductivity at a virtual monitoring station. Based on previous research, a modified ELM auto-encoder is developed to extract more robust invariance among the water quality data. A weighted ELM that takes seasonal variation as the basis of weighting is used to predict the actual value of water quality parameters at sites which only have historical data and no longer generate new data. The performance of the proposed model is validated against the monthly data from eight monitoring stations on the Zengwen River, Taiwan (2002–2017). Based on root mean square error, mean absolute error, mean absolute percentage error and correlation coefficient, the experimental results show that the new model is better than the other classical spatial interpolation methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have