Abstract

We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment.

Highlights

  • All-dielectric metamaterials[1] are an attractive alternative to the resonant metal-based photonic structures due to smaller material losses

  • In this paper we demonstrate an outstanding potential of water as a building platform for inexpensive tunable all-dielectric electromagnetic metamaterials

  • Throughout the paper we consider normal incidence of an electromagnetic wave on a single layer of meta-atoms made of water, i.e., water-filled thin-walled containers made of low-ε low-loss dielectric

Read more

Summary

Introduction

All-dielectric metamaterials[1] are an attractive alternative to the resonant metal-based photonic structures due to smaller material losses. “In a shadow” of these radio-frequency high-ε dielectrics (for example, barium strontium titanate), simpler materials, such as water with its relatively modest low-frequency Re(ε) ≈ 80 at room temperature, are often overlooked. Even though the real part of permittivity Re(ε) for water is relatively high (especially compared to the materials in the optical range), pure water is fairly lossy (the fact widely used for microwave cooking24), and the losses Im(ε) get further increased in presence of impurities ions. This has typically been viewed as a detriment to the use of water in a design of electromagnetic structures. It preserves its volume and takes the shape of its container, which opens up many possibilities www.nature.com/scientificreports/

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.