Abstract

The spatial representativeness of the in-situ data is an important prerequisite for ensuring the reliability and accuracy of remote sensing product retrieval and verification. Limited by the collection cost and time window, it is essential to simultaneously collect multiple water parameter data in water tests. In the shipboard measurements, sampling design faces problems, such as heterogeneity of water quality multi-parameter spatial distribution and variability of sampling plan under multiple constraints. Aiming at these problems, a water multi-parameter sampling design method is proposed. This method constructs a regional multi-parameter weighted space based on the single-parameter sampling design and performs adaptive weighted fusion according to the spatial variation trend of each water parameter within it to obtain multi-parameter optimal sampling points. The in-situ datasets of three water parameters (chlorophyll a, total suspended matter, and Secchi-disk Depth) were used to test the spatial representativeness of the sampling method. The results showed that the sampling method could give the sampling points an excellent spatial representation in each water parameter. This method can provide a fast and efficient sampling design for in-situ data for water parameters, thereby reducing the uncertainty of inversion and the validation of water remote sensing products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.