Abstract

The main purpose of this research was to determine the impact of the structure and organisation of polysaccharides on the hydration properties of the cell walls of cereal grains. In order to remodel the lamellar assembly of arabinoxylan (AX) and (1 → 3)(1 → 4)-β-D-glucan (BG) within the endosperm cell walls, films were prepared and analysed using dynamic vapour sorption and time domain nuclear magnetic resonance spectroscopy. The water diffusivities within the AX and BG films were measured at 20 °C by observing the water sorption kinetics within a mathematical model based on Fick's second law. The evolution of spin-spin relaxation times of water protons measured by increasing the temperature is explained by the additional contributions of motion of the protons of polysaccharides and/or rapid chemical exchanges of protons between water and hydroxyl groups of polysaccharides. The difference between patterns of water behaviour within the AX and BG films can be related to the difference in their nanostructures. The smaller nanopores of the BG films cause their nanostructure to be more compact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.