Abstract

This study reports the findings from using time-domain nuclear magnetic resonance (TD-NMR) to analyze the pore structures of cotton fibers. Cotton fibers, which swell and soften in water, present challenges for conventional pore measurement techniques. TD-NMR overcomes these by measuring the transverse relaxation time (T2) of water protons within the fibers, indicative of internal pore sizes. We established a T2-to-pore size conversion equation using mixed cellulose ester membranes. This enabled differentiation between strongly bound, loosely bound, and free water within the fibers, and detailed the water distribution. A method for measuring the pore size distribution of wet cotton fiber was developed using TD-NMR. We then examined how various pretreatments affect the fibers' internal pores by comparing their pore size distribution and porosity. Specifically, caustic mercerization primarily enlarges the porosity and size of larger pores, while liquid ammonia treatment increases porosity but reduces the size of smaller pores. This research confirms TD-NMR's utility in assessing cotton fabrics' wet processing performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.