Abstract

In arid or semi-arid ecosystems, water availability is one of the primary controls on vegetation growth. When subsurface water resources are unavailable, the vegetation growth is dictated by the rainfall, and the random nature of the rainfall arrivals and quantities induces a probability distribution of soil moisture and vegetation biomass via the coupled dynamic equations of biomass balance and water balance. We have previously obtained an exact solution for these distributions under certain conditions, and shown that the mapping of rainfall variability to observed biomass variability can be successfully applied to a field site. Here, we expand upon our earlier theoretical work to show how the dynamics can give rise to more complicated, bimodal (and multimodal) structures in the biomass distribution when positive feedbacks between growth and water availability are included. We also derive some new analytical results for the crossing properties of this system, which enable us to determine on what time scale the effects of these feedbacks will be felt, and, relatedly, how long the system will take to cross between different modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.