Abstract

A critical step in data analysis for many different types of experiments is the identification of features with theoretically defined shapes in -dimensional datasets; examples of this process include finding peaks in multi-dimensional molecular spectra or emitters in fluorescence microscopy images. Identifying such features involves determining if the overall shape of the data is consistent with an expected shape; however, it is generally unclear how to quantitatively make this determination. In practice, many analysis methods employ subjective, heuristic approaches, which complicates the validation of any ensuing results-especially as the amount and dimensionality of the data increase. Here, we present a probabilistic solution to this problem by using Bayes' rule to calculate the probability that the data have any one of several potential shapes. This probabilistic approach may be used to objectively compare how well different theories describe a dataset, identify changes between datasets and detect features within data using a corollary method called Bayesian Inference-based Template Search; several proof-of-principle examples are provided. Altogether, this mathematical framework serves as an automated 'engine' capable of computationally executing analysis decisions currently made by visual inspection across the sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.