Abstract
This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 185030, “Improved Oil Recovery in Tight Oil Formations: Results of Water-Injection Operations and Gas-Injection Sensitivities in the Bakken Formation of Southeast Saskatchewan,” by S.M. Ghaderi, C.R. Clarkson, and A. Ghanizadeh, University of Calgary, and K. Barry and R. Fiorentino, Crescent Point Energy, prepared for the 2017 SPE Canada Unconventional Resources Conference, Calgary, 15–16 February. The paper has not been peer reviewed. Although improvement in hydraulic-fracture properties and infill drilling remains the focus of recovery enhancement from the Bakken, low oil recoveries and steep initial decline rates are experienced in primary-recovery operations, even after application of multifractured-horizontal-well technology. Therefore, many pilots have been executed to determine the viability of waterflooding for maintaining oil rates and improving recoveries through reservoir-pressure maintenance and sweep-efficiency enhancement. This paper presents the performance results from one of the waterflood pilots in the Viewfield Bakken. Numerical-Model Setup A section of the Bakken reservoir (the geology of which is described in detail in the complete paper) deemed to be representative of the waterflood performance in Viewfield is considered for modeling. This section has been developed by use of multifractured horizontal wells completed in the Middle Bakken (main target reservoir) with a well spacing of 200 m (eight wells per section, named A through H). All eight wells started oil production within a similar time frame, and, after approximately 1 year of production, every other well was converted to a water injector. Reservoir-Fluid Model. Conventional pressure/volume/temperature (PVT) analysis was conducted by a commercial laboratory on 12 surface-separator oil and gas samples. Recombination of fluids at reservoir temperature (156.2°F) yields a final gas/oil ratio of 810 scf/STB. Subsequently, a series of constant-composition-expansion and differential-liberation tests was conducted on the recombined fluid to determine oil-saturation pressure, oil-formation-volume factor, oil density, and oil and gas viscosity as a function of pressure. The Peng-Robinson equation of state and modified Pedersen viscosity correlation were tuned to replicate the PVT properties of oil and gas as a function of pressure. Reservoir Grid Model. On the basis of the well tops and reservoir net-pay values, reservoir structure for the study area was generated. It is known that the minimum horizontal stress is aligned in the northwest direction and at approximately 50° with respect to the east/west horizon. Therefore, reservoir gridding is rotated at this angle to mimic the hydraulic-fracture orientation along the horizontal-well laterals. Grid size in the horizontal direction is 65×65 ft, and the total thickness of the reservoir is approximately 28 ft, which is divided into nine layers of equal thickness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have