Abstract
ABSTRACTIn this study, a large-scale one-directional freezing experiment with water supply was performed to investigate the water–heat migration and frost-heave behavior of the saturated silty clay. The results indicate that the temperature gradient is larger in the frozen zone than that in the unfrozen zone because of the heat release of the supplied water and its water–ice phase change during the freezing process. Furthermore, the different parts of the total frost heave are evaluated, respectively, and it is also found that the frost heave can be reduced if the advance rate of the freezing front is effectively controlled even if external water is sufficient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have