Abstract

We demonstrate high-repetition-rate imaging of the liquid-film thickness in the 50-1000µm range resulting from impinging water droplets on a glass surface. The pixel-by-pixel ratio of line-of-sight absorption at two time-multiplexed near-infrared wavelengths at 1440 and 1353nm was detected with a high-frame-rate InGaAs focal-plane array camera. Frame rates of 1kHz and thus measurement rates of 500Hz could be achieved, well suited to capture the fast dynamics of droplet impingement and film formation. The droplets were sprayed onto the glass surface using an atomizer. Suitable absorption wavelength bands for water droplet/film imaging were determined from Fourier-transform infrared (FTIR) spectra of pure water between 298 and 338K. At 1440nm, the water absorption is nearly temperature-independent, making the measurements robust against temperature fluctuations. Time-resolved imaging measurements capturing the dynamics of the water droplet impingement and evolution were successfully demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.