Abstract
A drawback of membrane distillation is the excessive use of heat, which is neither cost-effective nor environmentally effective considering the water–energy nexus. The present paper reports on the analysis and optimization of a bench-scale membrane distillation unit regarding thermal efficiency and transmembrane flux. The research work was developed using a phenomenological mathematical model which was validated against the experimental data. With the optimized process, the heat lost by conduction through the membrane from the retentate side is minimized by a proper design of the membrane properties. With the optimal set of membrane thickness, porosity, and thermal conductivity, the heat conduction across the membrane skeleton was null but retaining the heat transferred by water vapor flux (about 30%), which is intrinsically associated with the membrane distillation phenomenon. Additionally, the transmembrane flux increased by 2-fold using the optimal design for the cell, confirming that thermal efficiency is not in contradiction to water productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.