Abstract
This article deals with water droplet and cavitation erosion behavior of diode laser-treated X10CrNiMoV1222 stainless steel and Ti6Al4V alloy. After laser surface treatment, the water droplet and cavitation erosion resistance (WDER and CER) of these materials improved significantly. The main reason for the improvement is the increased surface hardness and formation of fine-grained microstructures after laser surface treatment. It is observed that there is a similarity in both the phenomena. The WDER and CER can be correlated with a single mechanical property based on modified ultimate resilience (MUR) provided the laser-treated layers are free from microcracks and interface defects. The CER and WDER behavior of HPDL-treated X10CrNiMoV1222 stainless steel and Ti6Al4V alloy samples using different test equipment as per ASTM G32-2003 and ASTM G73-1978, their correlation with MUR, and their damage mechanism compared on the basis of XRD analyses, optical and scanning electron micrographs are discussed and reported in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.