Abstract

The addition of water to native cellulose/1-ethyl-3-methylimidazolium acetate solutions catalyzes the formation of gels, where polymer chain-chain intermolecular associations act as cross-links. However, the relationship between water content (Wc), polymer concentration (Cp), and gel strength is still missing. This study provides the fundamentals to design water-induced gels. First, the sol-gel transition occurs exclusively in entangled solutions, while in unentangled ones, intramolecular associations hamper interchain cross-linking, preventing the gel formation. In entangled systems, the addition of water has a dual impact: at low water concentrations, the gel modulus is water-independent and controlled by entanglements. As water increases, more cross-links per chain than entanglements emerge, causing the modulus of the gel to scale as Gp ∼ Cp2Wc3.0±0.2. Immersing the solutions in water yields hydrogels with noncrystalline, aggregate-rich structures. Such water-ionic liquid exchange is examined via Raman, FTIR, and WAXS. Our findings provide avenues for designing biogels with desired rheological properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call