Abstract

Abstract: Lichens, being poikilohydric, have varying thallus water contents (WC) and show a complex interaction between net photosynthesis (NP) and WC. NP can be depressed at low WC (desiccation effects) and, in some species, also at high WC. In the latter case the depression is normally ascribed to increased CO2 diffusion resistances through water blockage. Recently, an earlier explanation, that the depression at high WC is due to recycling of CO2 from increased dark respiration processes (DR), has been given renewed prominence.The two explanations were distinguished by the concurrent use of gas exchange and chlorophyll fluorescence techniques to investigate NP: WC relationships in the lichens Peltigera leucophlebia (green algal) and P. neckeri (cyanobacterial). Both species had a distinct optimal WC for NP with depressed values at low and high WC. The maximal quantum yield for both CO2 fixation (initial slope of light response curves of NP) and photosystem II (fluorescence signals of dark‐adapted thalli) was depressed only at low WC and remained high at optimal and greater WC. In contrast, the relative electron transport rate (ETR, derived from fluorescence signals of thalli in the light) tracked NP and was depressed at low and high WC. The depression of both NP and ETR at high WC (not that at low WC) could be prevented by using elevated external CO2 concentrations. A single, linear relationship was found between all values of gross photosynthesis (NP + DR) and ETR regardless of external CO2 concentration or WC.Our results show that, for these lichens, the depression in NP at high WC is a real fall in photosynthetic rate of the photobionts and is not due to recycling of CO2. The removal of the depression in NP and ETR at high WC by using elevated external CO2 levels allows us to conclude that an additional CO2 diffusion resistance is present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call