Abstract

Abstract Accurate and rapid leak localization in water distribution networks is extremely important as it prevents further loss of water and reduces water scarcity. A framework for identifying relevant leak event parameters such as the leak location, leakage area, and start time is presented in this paper. Firstly, the proposed data-driven methodology consists of acquiring pressure data at nodes in the network through hydraulic simulations by randomly changing the leak event initial conditions (leak location, area, and start time). Pressure uncertainties are added to the sensor measurements in order to make the problem more realistic. Secondly, the acquired data are then used to train, test, and validate a machine learning model in order to predict the relevant parameters. The random forest and the histogram-based gradient boosting machine learning algorithms are investigated and compared for the leak detection problem. The proposed approach with the histogram-based gradient boosting algorithm shows high accuracy in predicting the true leak location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.