Abstract

We report picosecond time-resolved x-ray diffraction from the myoglobin (Mb) mutant in which Leu29 is replaced by Phe (L29Fmutant). The frame-by-frame structural evolution, resolved to 1.8 angstroms, allows one to literally "watch" the protein as it executes its function. Time-resolved mid-infrared spectroscopy of flash-photolyzed L29F MbCO revealed a short-lived CO intermediate whose 140-ps lifetime is shorter than that found in wild-type protein by a factor of 1000. The electron density maps of the protein unveil transient conformational changes far more dramatic than the structural differences between the carboxy and deoxy states and depict the correlated side-chain motion responsible for rapidly sweeping CO away from its primary docking site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.