Abstract

Phytoremediation is used to treat wastewater, wherein plants, microorganisms, and soil work together to remediate pollutants. We evaluated the plant processes that can affect metal mobilization during phytoremediation. The experimental columns were filled with silica sand and soil mixture spiked with redox-sensitive metal(loid)s—arsenic, manganese, and iron, and fitted with an ORP probe and oxygen sensors. Three columns were planted with poplars and three others were no-plant controls. Carbon-rich, synthetic food-processing wastewater was applied at 15.4 mm/day to the columns. Leachate water was analyzed every other week for water quality. Both soil and plant tissue samples were analyzed for metal concentrations, and soils were analyzed for microbial populations. Both treatments reduced 65–70% carbon. ORP ranged from −321 mV to 916 mV and affected metal mobilization. Oxic conditions in planted treatments yielded high ORP, oxygen concentration, and nitrates. Microbial communities were enhanced in both treatments, but the planted columns had more microbial abundance and evenness. Plants successfully accumulated metals in roots from soil with an accumulation factor of up to 40 for some metals and translocated to shoots from roots with a translocation factor of 10.62. The crop coefficient was 1.88, indicating accelerated loss of water in planted columns compared to control columns. The results demonstrated the benefits of plants in creating more oxic conditions, removing more wastewater from the rhizosphere, accumulating and translocating metals in the biomass, and enhancing rhizodegradation of pollutants by microbial population enhancement. Knowledge of the soil–plant–microbial processes is useful in designing engineered phytoremediation systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call