Abstract

Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/starch blends as carbon source and carrier for functional bacteria. The exclusive and interactive influences of operating parameters (i.e., temperature, pH, stirring rate, and PLA-to-starch ratio (PLA proportion)) on nitrification (Y 1), denitrification (Y 2), and COD release rates (Y 3) were investigated through response surface methodology. Experimental results indicated that nitrogen removal could be successfully achieved in the PLA/starch blends through simultaneous nitrification and denitrification. The carbon release rate of the blends was controllable. The sensitivity of Y 1, Y 2, and Y 3 to different operating parameters also differed. The sequence for each response was as follows: for Y 1, pH>stirring rate>PLA proportion>temperature; for Y 2, pH>PLA proportion>temperature> stirring rate; and for Y 3, stirring rate>pH>PLA proportion>temperature. In this study, the following optimum conditions were observed: temperature, 32.0°C; pH 7.7; stirring rate, 200.0 r ∙min–1; and PLA proportion, 0.4. Under these conditions, Y 1, Y 2, and Y 3 were 134.0 μg-N∙gblend–1∙h–1, 160.9 μg-N∙g-blend–1∙h–1, and 7.6 × 103 μg-O∙g-blend–1∙h–1, respectively. These results suggested that the PLA/starch blends may be an ideal packing material for nitrogen removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.