Abstract
Abstract Ginger oil in water (O/W) nanoemulsions, were produced using phase inversion composition method and Tween 80, as emulsifier. Effects of processing parameters namely, stirring rate (100 to1000 rpm) and water addition rate (1–10 mL/min) were evaluated on the physico-chemical, morphological, antioxidant and antimicrobial properties of the prepared O/W nanoemulsions using response surface methodology (RSM). Results indicated that well dispersed and spherical ginger nanodroplets were formed in the nanoemulsions with minimum particle size (8.80 nm) and polydispersity index (PDI, 0.285) and maximum zeta potential value (−9.15 mV), using stirring rate and water addition rate of 736 rpm and 8.18 mL/min, respectively. Insignificant differences between predicted and experimental values of the response variables, indicated suitability of fitted models using RSM. Mean particle size of the prepared nanoemulsion using optimum conditions were changed from 8.81 ± 1 to 9.80 ± 1 nm, during 4 weeks of storage, which revealed high stability of the resulted ginger O/W nanoemulsion. High antioxidant activity (55.4%), bactericidal (against Streptococcus mutans) and fungicidal (against Aspergillus niger) activities of the prepared nanoemulsion could be related to the presence of gingerols and shogaols, a group of phenolic alkanones, in the ginger oil, which those were detected by gas chromatography method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.