Abstract

Abstract Iron loaded biochar (ILB) was prepared from waste walnut shell by microwave pyrolysis and its application for arsenic removal was attempted. The ILB was characterized using X-ray diffraction, scanning electron microscopy and BET Surface area analyzer. The adsorption isotherm of As (V) in ILB covering a temperature range of 25 to 45 °C, as well as the kinetics of adsorption at 25 °C were experimentally generated. The adsorption isotherms were modeled using Langmuir and Freundlich isotherm models, while the kinetics of adsorption was modeled using the pseudo-first-order, pseudo-second-order kinetic models, and intra particle diffusion model. The ILB had a surface area of 418 m 2 /g with iron present in the form of hematite (Fe 2 O 3 ) and magnetite (Fe 3 O 4 ). The arsenic adsorption isotherm matches well with Langmuir isotherm model with a monolayer adsorption capacity of 1.91 mg/g at 25 °C. The adsorption capacity of As (V) well compares with other porous adsorbents widely reported in literature, supporting its application as a cost effective adsorbent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call