Abstract

Capacitive deionization is an efficient technology for water purification and treatment. The electrode material is crucial to improving the performance of capacitive deionization. Herein, Fe3O4 nanoparticles-modified hierarchically porous carbon (Fe3O4 NPs/HPC) was successfully synthesized by the pyrolysis of waste Camellia oleifera shell coupling with the post-modification. Owing to its unique structure and composition, the as-prepared Fe3O4 NPs/HPC delivered great potential in capacitive deionization and heavy metal removal. Under the current density of 0.5 A g-1, the Fe3O4 NPs/HPC electrode showed a high specific capacitance of 134.5 F g−1 in 1 M NaCl solution, much more than the bare HPC electrode of 99.9 F g−1. In addition, the Fe3O4 NPs/HPC electrode exhibited excellent cycle stability with negligible loss of capacitance after 1000 cycles at 2 A g-1. At an operating voltage of 1.2 V, the Fe3O4 NPs/HPC electrode released high uptake capacity of 34.22 and 39.52 mg g−1 for Cd(II) and Pb(II) ions, respectively. XPS spectra and competitive adsorption demonstrated that Cd(II) was mainly removed by the oxygen-containing groups of HPC through an electrosorption coupling with an electrodeposition multilayer process, but Pb(II) was uniformly adsorbed on the active sites including the oxygen-containing groups of HPC and the modified Fe3O4 NPs by a monolayer electrosorption process. The impressive results indicate that the as-prepared Fe3O4 NPs/HPC composites possess potential for the selective removal of heavy metal ions from saline wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call