Abstract
Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160years, the treeline increased by around 80m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.