Abstract

Diet selection in mammalian herbivores is thought to be mainly influenced by intrinsic factors such as nutrients and plant secondary compounds, yet extrinsic factors like ambient temperature may also play a role. In particular, warmer ambient temperatures could enhance the toxicity of plant defence compounds through decreased liver metabolism of herbivores. Temperature-dependent toxicity has been documented in pharmacology and agriculture science but not in wild mammalian herbivores. Here, we investigated how ambient temperature affects liver metabolism in the desert woodrat, Neotoma lepida. Woodrats (n = 21) were acclimated for 30 days to two ambient temperatures (cool = 21°C, warm = 29°C). In a second experiment, the temperature exposure was reduced to 3.5 h. After temperature treatments, animals were given a hypnotic agent and clearance time of the agent was estimated from the duration of the hypnotic state. The average clearance time of the agent in the long acclimation experiment was 45% longer for animals acclimated to 29°C compared with 21°C. Similarly, after the short exposure experiment, woodrats at 29°C had clearance times 26% longer compared with 21°C. Our results are consistent with the hypothesis that liver function is reduced at warmer environmental temperatures and may provide a physiological mechanism through which climate change affects herbivorous mammals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call