Abstract

Abstract Monthly mean velocity fields from a global ocean general circulation model are used to study the main circulation patterns within the upper 1200 m of the equatorial Atlantic. Some recently developed Lagrangian techniques are used to picture and quantify the routes followed in the model by distinct water mass classes, defined by their initial temperature on model transatlantic sections at 10°S and 10°N. The qualitative description in terms of equatorial pathways of this warm component of the so-called global “conveyor belt” is found coherent with the most recent circulation schemes inferred from direct measurements. Diagnostics emphasize the crucial role of the western boundary current system and that of the equatorial subsurface jets in distributing the flow in the equatorial domain, both for northward-flowing and southward-recirculating warm water masses. As the model tracer fields are constrained to remain close to the observed climatology outside the equatorial strip, the circulation calculate...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.