Abstract

The impact of a downslope water-transport parametrization on the circulation and water mass characteristics of a global depth-level ocean general circulation model is investigated. The spreading of dense water from the formation regions into the deep ocean is known to be poorly represented in depth-level models with no bottom boundary layer resolved or attached. The new scheme is simple and intends to parametrize the effects of various oceanographic processes (rather than the processes themselves) that help dense water to descend topographic slopes by which the formation regions are separated from the world ocean. The new scheme significantly improves the large scale properties of the North Atlantic Deep Water. Changes in the North Atlantic circulation, however, are rather small. In the Southern Ocean, the exchange between the dense water formation regions on the continental shelves and the deep ocean is strengthened at the expense of deep water mass formation by open ocean convection. In all three ocean basins, the density of the deep and bottom water is higher with the new parametrization, which brings the simulations closer to observations in the Atlantic and Indian Oceans. In the Pacific Ocean, however, where the density has already been well reproduced without the downslope transport, it becomes slightly too high. The results are in agreement with those from other model studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.