Abstract
A pseudorandom number generator is an important component for implementing security functionalities on RFID tags. Most previous proposals focus on true random number generators that are usually inefficient for low-cost tags in terms of power consumption, area, and throughput. In this contribution, we propose a lightweight pseudorandom number generator (PRNG) for EPC Class-1 Generation-2 (EPC C1 Gen2) RFID tags. The proposed PRNG fully exploits nonlinear feedback shift registers and provides 16-bit random numbers that are required in the tag identification protocol of the EPC C1 Gen2 standard. The generated sequences are able to pass the EPC C1 Gen2 standard's statistical tests as well as the NIST randomness test suite. Moreover, a detailed cryptanalysis shows that the proposed PRNG is resistant to the most common attacks such as algebraic attacks, cube attacks, and time-memorydata tradeoff attacks. In particular, the proposed PRNG can be implemented on low-cost Xilinx Spartan-3 FPGA devices with 46 slices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of RFID Security and Cryptography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.