Abstract

An intuitive and complete understanding of the underlying processes in high harmonic generation (HHG) in solids will enable the development and optimization of experimental techniques for attosecond measurement of dynamical and structural properties of solids. Here we introduce the Wannier quasi-classical (WQC) theory, which allows the characterization of HHG in terms of classical trajectories. The WQC approach completes the single-body picture for HHG in semiconductors, as it is in quantitative agreement with quantum calculations. The importance of WQC theory extends beyond HHG; it enables modeling of dynamic processes in solids with classical trajectories, such as for coherent control and transport processes, potentially providing better scalability and a more intuitive understanding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.