Abstract

High harmonic generation in semiconductors is analyzed for high mid-infrared laser intensities for which the electron-hole pair is driven beyond the first Brillouin zone and exhibits Bloch oscillations. We find that even a two-band analysis exhibits second and higher plateaus. Whereas the first plateau is shown to be consistent with high harmonic generation through electron-hole recollision, the higher plateaus arise from dynamic Bloch oscillations; however, the driving process is interband in nature, in contrast to the generally accepted intraband Bloch oscillation mechanism. Energy conservation is fulfilled, as harmonics beyond the first plateau come from a cascaded nonlinearity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.