Abstract

In this work, we use Wannier functions to analyze topological phase transitions in one dimensional photonic crystals. We first review the construction of exponentially localized Wannier functions in one dimension, and show how to numerically construct them for photonic systems. We then apply these tools to study a photonic analog of the Su-Schrieffer-Heeger model. We use photonic Wannier functions to construct a quantitatively accurate approximate model for the topological phase transition, and compute the localization of topological defect states. Finally, we discuss the implications of our work for the study of band representations for photonic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.