Abstract

The wall slip of linear polymer melts under ultrasonic vibration is investigated by correcting the slip mechanism, and melt flow behaviors in ultrasonic‐assisted micro‐injection molding (UμIM) method are discussed. Based on the effect mechanism of ultrasonic vibration on the melt, theoretical models of the critical shear stresses for the onset of weak and strong wall slip during UμIM are established, and the change in rheological properties due to the onset of wall slip under ultrasonic vibration is experimental investigated by a built measurement system. The results show that the onset of weak and strong wall slip of the melt in micro cavity are promoted by ultrasonic vibration, which agree with the built theoretical models, and the melt filling capability in micro cavity is enhanced by reducing apparent viscosity and releasing shear stress of the polymer melt, which improves the molding quality of micro polymer parts via UμIM method. POLYM. ENG. SCI., 59:E7–E13, 2019. © 2018 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.