Abstract

The first molecular scale simulation of highly entangled polydisperse homopolymers that is capable of capturing all three regions--no slip, weak slip, and strong slip--of the hydrodynamic boundary condition is presented. An on-lattice dynamic Monte Carlo technique capable of correctly capturing both unentangled and entangled polymer dynamics is used to study the molecular details of wall slip phenomena for homopolymers and energetically neutral walls. For unentangled chains (those exhibiting Rouse dynamics) weak slip is not present but evidence of strong slip is manifest at very high shear rates. For entangled chains (of sufficient length to exhibit reptation dynamics), both weak and strong slip are observed. Consistent with numerous experimental studies, disentanglement and cohesive failure occur at high shear rates. Disentanglement is clearly evidenced in a nonlinear velocity profile that exhibits shear banding, in an excess of chain ends at the slip plane, and perhaps most importantly in a nonmonotonic stress versus shear rate response. The chain end density exhibits a pretransitional periodicity prior to disentanglement. Unentangled Rouse chains do not show this pretransitional response or a bifurcation in their stress versus shear rate response. Finally, it is shown that when polydispersity is introduced, slip phenomena are severely reduced and the inherent constitutive bifurcation is limited to a small region. Predictions are in post facto agreement with many experiments, are distinct from existing results obtained using molecular dynamics simulation techniques, and shed light on fundamental mechanisms of polymer wall slip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.