Abstract

We report on the realization of a quantum sensor based on trapped atom interferometry in an optical lattice for the measurement of atom-surface interactions, with sub-micrometer-level control of the mean atom-surface separation distance. The force sensor reaches a short-term sensitivity of 3.4×10^{-28} N at 1s and a long-term stability of 4qN (4×10^{-30} N). We perform force measurements in the 0-300 μm range, and despite significant stray forces caused by adsorbed atoms on the surface, we obtain evidence of the Casimir-Polder force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.