Abstract
A database of wall-pressure-array measurements was compiled for studying the space–time character of the surface-pressure field within a separating/reattaching flow region. The experimental setup consisted of a long splitter plate located within the wake of a fence and instrumented with an array of flush-mounted microphones. Data were acquired for a Reynolds number of 7900, based on the fence height above the splitter plate. Two distinctive regions, defined based on their location relative to the position of the mean reattachment point (xr) of the shear layer, emerged from this investigation. Upstream, from the fence to 0.25xr, the surface-pressure signature was dominated by large time scale disturbances and an upstream convection velocity of 0.21U∞. Beyond 0.25xr, turbulent structures with smaller time scales and a downstream convection velocity of 0.57U∞ generated most of the pressure fluctuations. Interestingly, the low-frequency wall-pressure signature typically associated with the flapping of the separated shear layer was found to be composed of standing and downstream/upstream propagating wave components. The latter seemed to originate from a point near the middle of the reattachment zone, suggesting the existence of an absolute instability of the recirculation bubble, which may be the cause of the flapping of the shear layer.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have