Abstract

Biological bipeds have long been thought to take advantage of compliance and passive dynamics to walk and run, but realizing robotic locomotion in this fashion has been difficult in practice. Assume The Robot Is A Sphere (ATRIAS) is a bipedal robot designed to take advantage of the inherent stabilizing effects that emerge as a result of tuned mechanical compliance (Table 1). In this article, we describe the mechanics of the biped and how our controller exploits the interplay between passive dynamics and actuation to achieve robust locomotion. We outline our development process for the incremental design and testing of our controllers through rapid iteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.