Abstract
The “iCub ”is a robotic platform that was developed by the RobotCub [1] consortium to provide the cognition research community with an open “child-like ”humanoid platform for understanding and development of cognitive systems [1]. In this paper we present the mechanical realization of the lower body developed for the “cCub ”humanoid robot, a derivative of the original “iCub”, which has passive compliance in the major joints of the legs. It is hypothesized that this will give to the robot high versatility to cope with unpredictable disturbance ranging from small uneven terrain variations to unexpected collisions or even accidental falls. As part of the AMARSI European project, the passive compliance of this newly developed robot will be exploited for safer interaction, energy efficient and more aggressive damage-safe learning. The passive compliant actuation module used is a compact unit based on the series elastic actuator principle (SEA). In addition to the passive compliance the “cCub ”design includes other significant updates over the original prototype such as full joint state sensing including joint torque sensing and improved range of motion and torque capabilities. In this paper, the new leg mechanisms of the “cCub ”robot are introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.