Abstract
A class of probability models for the firing of neurons is introduced and treated analytically. The cell membrane potential is assumed to be a one-dimensional random walk on the continuum; the first passage of the moving boundary triggers a nerve spike, an all-or-none event. The interspike interval distribution of first-passage time is shown to satisfy a Volterra integral equation suitable for numerical evaluation. Explicit solutions as well as their Laplace (Mellin) transforms are obtained for some special cases. The main technique used in this paper is the extension of Wald's fundamental identity of sequential analysis to a wide range of additive stochastic processes with an (eventually) linear boundary function. This identity is also useful in evaluating model parameters in terms of observed firing times, as well as providing a unified exposition of many earlier results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.