Abstract

With the dielectric function derived from the chromohydrodynamic approach, we investigate wakes in induced charge density and wake potential induced by a fast parton traveling through the viscous quark-gluon plasma (QGP). When the fast parton moves with a speed v = 0.55c which is less than the phase velocity of plasmon vp in QGP, the equicharge lines show a sign flip in the backward-forward spaces. While for v = 0.99c which is larger than vp, the equicharge lines show an oscillatory behavior. A Lennard-Jones potential and an oscillatory wake potential are found in the backward direction for v = 0.55c and v = 0.99c respectively. In addition, the viscous effect on wakes is also speed-dependent. When v = 0.55c, shear viscosity has a trivial impact on the wakes. While for v = 0.99c, shear viscosity modifies the strength and structure of the wakes significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call