Abstract
This paper considers a heterogeneous M/G/2 queue. The service times at server 1 are exponentially distributed, and at server 2 they have a general distribution B(⋅). We present an exact analysis of the queue length and waiting time distribution in case B(⋅) has a rational Laplace–Stieltjes transform. When B(⋅) is regularly varying at infinity of index −ν, we determine the tail behaviour of the waiting time distribution. This tail is shown to be semi-exponential if the arrival rate is lower than the service rate of the exponential server, and regularly varying at infinity of index 1−ν if the arrival rate is higher than that service rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.