Abstract
대기행렬 시스템에는 고객들의 대기시간이 지나치게 길어지는 것을 막기 위해 다양한 정책들이 적용되는데, 본 연구에서는 고객숫자에 따른 제어 정책을 갖는 유한용량 M/G/1/K 대기행렬을 분석한다. 고객의 숫자에 따라 서버의 서비스율과 고객의 도착율을 조절하는 정책이다. 두 개의 한계점(thresholds) <TEX>$L_1$</TEX>과 <TEX>$L_2$</TEX>(<TEX>$${\geq_-}$$</TEX>L1)를 설정하고 시스템 내 고객의 숫자가 <TEX>$L_1$</TEX>보다 작을 때는 시스템은 보통(또는 상대적으로 느린)의 서비스율(service rate)과 보통의 도착율(arrival rate)을 갖는다. 고객의 숫자가 증가하여 <TEX>$L_1$</TEX>이상이고 <TEX>$L_2$</TEX>보다 작으면 도착율은 그대로 이지만 서비스율을 증가시켜 빠르게 서비스한다. 이후 고객의 숫자가 더욱 증가하여 <TEX>$L_2$</TEX> 이상이면 고객의 도착율도 작은 값으로 바꾸어 고객을 덜 입장시킨다. 위 정책을 갖는 M/G/1/K 대기행렬을 내재점 마코프 체인과 준-마코프 과정을 이용하여 분석하고 수치예제를 제시한다. We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds <TEX>$L_1$</TEX> and <TEX>$L_2$</TEX>(<TEX>$${\geq_-}L_1$$</TEX> ) on the buffer. If the queue length at the service initiation epoch is less than the threshold <TEX>$L_1$</TEX>, the service time of customers follows <TEX>$S_1$</TEX> with a mean of <TEX>${\mu}_1$</TEX> and the arrival of customers follows a Poisson process with a rate of <TEX>${\lambda}_1$</TEX>. When the queue length at the service initiation epoch is equal to or greater than <TEX>$L_1$</TEX> and less than <TEX>$L_2$</TEX>, the service time is changed to <TEX>$S_2$</TEX> with a mean of <TEX>$${\mu}_2{\geq_-}{\mu}_1$$</TEX>. The arrival rate is still <TEX>${\lambda}_1$</TEX>. Finally, if the queue length at the service initiation epoch is greater than <TEX>$L_2$</TEX>, the arrival rate of customers are also changed to a value of <TEX>$${\lambda}_2({\leq_-}{\lambda}_1)$$</TEX> and the mean of the service times is <TEX>${\mu}_2$</TEX>. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have