Abstract

The integration of atomically thin materials into semiconductor and photonic foundries is crucial for their use in commercial devices. However, current integration approaches are not compatible with industrial processing on wafer level, which is one of the bottlenecks hindering the breakthrough of 2D materials. Here, we present a generic methodology for the large-area transfer of 2D materials and their heterostructures by adhesive wafer bonding for use at the back end of the line (BEOL). Our approach exclusively uses processes and materials readily available in most largescale semiconductor manufacturing lines. Experimentally, we demonstrated the transfer of CVD graphene from Cu foils to 100-mm-diameter silicon wafers, the stacking of two monolayers of graphene to 2-layer graphene, and the formation of MoS<sub>2</sub>/graphene heterostructures by two consecutive transfers. We expect that our methodology is an important step towards the commercial use of 2D materials for a wide range of applications in optics and photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.