Abstract

We report a process to form large-area, few-monolayer graphene oxide films and then recover the outstanding mechanical properties found in graphene to fabricate high Young's modulus (<E> =185 GPa), low-density nanomechanical resonators. Wafer-scale films as thin as 4 nm are sufficiently robust that they can be delaminated intact and resuspended on a bed of pillars or field of holes. From these films, we demonstrate radio frequency resonators with quality factors (up to 4000) and figures of merit ( f x Q>10(11)) well exceeding those of pure graphene resonators reported to date. These films' ability to withstand high in-plane tension (up to 5 N/m) as well as their high Q-values reveals that film integrity is enhanced by platelet-platelet bonding unavailable in pure graphite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call