Abstract
Emerging two-dimensional (2D) semiconducting materials serve as promising alternatives for next-generation digital electronics and optoelectronics. However, large-scale 2D semiconductor films synthesized so far are typically polycrystalline with defective grain boundaries that could degrade their performance. Here, for the first time, wafer-size growth of a single-crystal Bi2O2Se film, which is a novel air-stable 2D semiconductor with high mobility, was achieved on insulating perovskite oxide substrates [SrTiO3, LaAlO3, (La, Sr)(Al, Ta)O3]. The layered Bi2O2Se epilayer exhibits perfect lattice matching and strong interaction with perovskite oxide substrates, which enable unidirectional alignment and seamless mergence of multiple seeds into single-crystal continuous films free of detrimental grain boundaries. The single-crystal Bi2O2Se thin films show excellent spatial homogeneity over the entire wafer and allow for the batch fabrication of high-performance field-effect devices with high mobilities of ∼150 cm2 V-1 s-1 at room temperature, excellent switching behavior with large on/off ratio of >105, and high drive current of ∼45 μA μm-1 at a channel length of ∼5 μm. Our work makes a step toward the practical applications of high-mobility semiconducting 2D layered materials and provides an alternative platform of oxide heterostructure to investigate novel physical phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.