Abstract

In this paper, we present the use of thermosetting nano-imprint resists in adhesive wafer bonding. The presented wafer bonding process is suitable for heterogeneous three-dimensional (3D) integration of microelectromechanical systems (MEMS) and integrated circuits (ICs). Detailed adhesive bonding process parameters are presented to achieve void-free, well-defined and uniform wafer bonding interfaces. Experiments have been performed to optimize the thickness control and uniformity of the nano-imprint resist layer in between the bonded wafers. In contrast to established polymer adhesives such as, e.g., BCB, nano-imprint resists as adhesives for wafer-to-wafer bonding are specifically suitable if the adhesive is intended as sacrificial material. This is often the case, e.g., in fabrication of silicon-on-integrated-circuit (SOIC) wafers for 3D integration of MEMS membrane structures on top of IC wafers. Such IC integrated MEMS includes, e.g., micro-mirror arrays, infrared bolometer arrays, resonators, capacitive inertial sensors, pressure sensors and microphones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call