Abstract

The dissociative photoionization dynamics of the chloroacetone molecule (C3H5OCl) in the gas phase, induced by vacuum ultraviolet (VUV) synchrotron radiation in the range from 10.85 to 21.50 eV, has been investigated by using time-of-flight mass spectrometry in the photoelectron-photoion coincidence mode. The appearance energies for the most relevant cation fragments produced in this energy range have been analyzed, and the fragmentation pathways leading to the formation of the cation species have been proposed and discussed. The mass spectra show that the most dominant VUV photodissociation cation product appears at m/z 43 and has been assigned to the C2H3O+ species. Enthalpies of formation (ΔfH°0K) for the neutral chloroacetone molecule and its molecular cation have been derived and correspond to -207.8 ± 5.8 kJ/mol and 755.1 ± 6.8 kJ/mol, respectively. In addition to the spectral analysis, the structural and energetic parameters for the cations produced have also been examined on the basis of high-level quantum chemical numerical calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.