Abstract
In this study, a nonlinear model is developed to study the response of blast-loaded reinforced concrete (RC) columns. The strain rate dependency and the axial load and P−Δ effects on the flexural rigidity variation along the column heights were implemented in the model. Strain rate and axial load effects on a typical RC column cross section were investigated by developing strain-rate-dependent moment-curvature relationships and force-moment interaction diagrams. Analysis results showed that the column cross section strength and deformation capacity are highly dependent on the level of strain rates. Pressure-impulse diagrams were developed for two different column heights with two different end connection details (ductile and nonductile) and the effects of the axial load on the column midheight deflection and end rotation at failure were evaluated for both connection types. Based on the results of this study, a pressure-impulse band (PIB) technique is proposed. The PIB technique presents a useful tool that...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have