Abstract

The purpose of this work is to study the vulnerability of the Quaternary aquifer that lies beneath the N’Djamena city Chad. The subsoil of N’Djamena city Chad is made up of a multilayered aquifer in which there are two main aquifers located respectively at a depth of about 10 and 60 m, between the two there is an intermediate aquifer at about 30 m depth. It is this latter water table, generally captured by human-powered pumps, that is the subject of this study. Because of anarchic garbage dumping, wastewater discharge, latrines scattered throughout the city, chemical fertilizers and herbicides used on the banks of Chari River and its tributary the Logone for market gardening, the quality of the water in this aquifer is highly threatened. Moreover, it has been noting that the sources of pollution are constantly increasing in conjunction with the growth of the population, so the knowledge and protection of groundwater are necessary. We have therefore carried out a study of intrinsic vulnerability using two mapping methods (GOD and SI), as mapping is recognized as an effective tool for decision support in the case of safeguarding water resources. The results obtained by the GOD method show that 38% of the study area is covered by high vulnerability, 29% by moderate vulnerability, 21% by low vulnerability and 21% by the very low vulnerability. With the SI method, 54% of the study area is covering by low vulnerability and 46% by the low and moderate vulnerability. The coincidence rate of low nitrate values in groundwater with areas of very low and low vulnerability is 91% and 76% for the GOD and SI methods, respectively. Although these observations validated the different maps obtained, the SI approach seems to be the most adequate for vulnerability tracing in our study area.

Highlights

  • Water is necessary for all life on planet and is a factor in promoting the health of individuals and the socio-economic development of human communities [1]

  • The results obtained by the GOD method show that 38% of the study area is covered by high vulnerability, 29% by moderate vulnerability, 21% by low vulnerability and 21% by the very low vulnerability

  • Groundwater is not immune to surface pollution since it is largely renewed by rainwater that falls on the surface before infiltrating through the soil to the water table, carrying with it certain undesirable products

Read more

Summary

Introduction

Water is necessary for all life on planet and is a factor in promoting the health of individuals and the socio-economic development of human communities [1]. Groundwater, which represents a total of about 97% of liquid continental freshwater [2], is increasingly exploited for drinking water supply (DWR). This is reflected in the renewed interest in human-powered boreholes observed in recent times in Sub-Saharan African countries. The increasing pollution of the groundwater leads to the alteration of the quality and the decrease of the quantity of drinking water. This is very worrying because, in the long term, water resources will be weakened even if they are renewable. Knowing that in a given region, the vulnerability of aquifers to pollution results from the interaction of several factors, among which we can enumerate the hydrogeology, the aquifer-contaminant reaction and the sources of pollution [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call