Abstract
This paper assesses quantitatively the impact of sea level rise (SLR) at the global and regional scale as a result of climate change (CC) on the coastal areas of the Kingdom of Bahrain’s islands (36 Islands). The standard Intergovernmental Panel on Climate Change (IPCC) guidelines was modified as appropriate for the situation of the study area. Geographic Information Systems (GIS) coupled with Remote Sensing (RS) were used as the main techniques of collecting, analyzing, modeling simulating and disseminating information to build SLR scenarios in a geographically referenced context. Also, these tools were used to assess vulnerability and risk of the coastal area of the islands with the expectation that coastal planner and government authorities will profit from integrating these knowledge into a broad based environmental decision making. Three SLR scenarios: low, moderate and high were developed to examine the impacts from SLR on all islands. The low SLR scenario (Optimistic) assumes a 0.5-m rise above current sea level, the moderate scenario (Intermediate) assumes a one meter rise, and the high scenario (Pessimistic) assumes a 1.5 m rise in sea level. Two more SLR scenarios were assumed to perform risk analysis, a 2 and 5 meter rise above current sea level. The simulation of SLR are quite straightforward, emphasizing on the uses of both of the data that are incorporated from the satellite images and the created Digital Elevation Model (DEM) to estimate SLR scenarios that are adapted in the study. These data were used to predict consequences of the possibility of the rise in sea level at different scenarios which may alter the landuse and patterns of human communities. Results indicate that low-lying coastal areas of Bahrain islands are at risk from the effects of any SLR resulting from CC. These islands are vulnerable under different SLR Scenarios. More than 17% of the country total area may be inundated under 1.5 m SLR in 2100. The total area that might be lost under different sea level scenarios will vary from more than 77 km2 if SLR reaches 0.5 m, to about 100 km2 under 1.0 m SLR and may reach 124 km2 under 1.5 m SLR scenario. The total inundated areas due to risk scenarios will reach 133 km2, if the SLR rises to 2.0 m, and it is estimated to be more than (22%) of the main island total area. Under the second scenario, if the SLR reaches 5.0 m, the main islands will lose approximately half of its area (47%) equal to 280 km2. Hawar islands group will lose about (30%) of its total area under 2.0 m SLR, which is about 15.5 km2.A SLR adaptation policy framework (APF) and adaptation policy initiatives (APIs) are suggested for planners to build upon for reducing the likely effects of SLR in the Kingdom of Bahrain. The framework is composed of four steps namely, acquisition of information, planning and design, implementation and monitoring and evaluation. A general policy framework for a national response to SLR is suggested. Additionally, a range of policy adaptation options/initiatives to sustain coastal developments under the likely effects of SLR are recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mitigation and Adaptation Strategies for Global Change
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.