Abstract
The human voice speech includes essentially paralinguistic information used in many applications for voice recognition. Classifying speakers according to their age-group has been considered as a valuable tool in various applications, as issuing different levels of permission for different age-groups. In the presented research, an automatic system to classify speaker age-group without depending on the text is proposed. The Fundamental Frequency (F0), Jitter, Shimmer, and Spectral Sub-Band Centroids (SSCs) are used as a feature, while the Probabilistic Neural Network (PNN) is utilized as a classifier for the purpose of classifying the speaker utterances into eight age-groups. Experiments are carried out on VoxCeleb1 dataset to demonstrate the proposed system's performance, which is considered as the first effort of its kind. The suggested system has an overall accuracy of roughly 90.25%, and the findings reveal that it is clearly superior to a variety of base-classifiers in terms of overall accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Arab Journal of Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.