Abstract
Snoring sounds are generated by the vibration of pharyngeal tissue due to the upper airway narrowing. While recorded by a microphone placed over the neck, snoring can pass through the pharyngeal tissue surrounding the upper airway. Thus, changes in the pharyngeal tissue content may change the acoustic properties of the snoring sounds. Rostral fluid shift and the consequent increases in neck fluid volume (NFV) and neck circumference (NC) can increase pharyngeal tissue mass. Therefore, the goal of this study was to investigate the relationship between increases in pharyngeal tissue mass, as assessed by increased NFV and NC, and snoring sounds features. We obtained data from a previous study where 20 males who were not obese participated in a daytime polysomnography and their NC and NFV were measured before and after sleep. During sleep, snoring sounds were recorded with a microphone placed over the neck. Spectral centroid of the snoring sounds was estimated. Then, the first five snoring segments were selected from the first and last 30 minutes of stage N2 sleep. We found a significant decrease in the snoring spectral centroid from the beginning to end of sleep. We also found that spectral centroid from the end of sleep in frequency ranges below 200 Hz was inversely correlated with the increases in NFV and NC from before to after sleep. These results suggest that snoring spectral centroid can be used as a noninvasive and convenient method to assess variations in the pharyngeal tissue mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.